

DPP – 1

Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/82			
Video Solution on YouTube:-		https://youtu.be/glzkIM90nao			
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/20			
Q 1. A barometer tube reads 76 cm of mercury. If the tube is gradually inclined at an angle					
	of 60° with vertical, keeping the open end immersed in the mercury reservoir, the length of the mercury column will be: (a) 152 cm (b) 76 cm (c) 38 cm (d) $38\sqrt{3}$				
Q 2.	Equal mass of three liquids are kept in three identical cylindrical vessels A, B and C. The densities are ρ_A , ρ_B , ρ_C with $\rho_A < \rho_B < \rho_C$. The force on the base will be -				
	(a) maximum in vessel A (b) maximum in vessel B (c) maximum in vessel C				
0.2	(d) equal in all the vessels				
Q 3.	A satellite revolves round the earth. All pressure inside the satellite is maintained at 76 am of moreovery. What will be the beight of moreovery solumn in a becometer type 00				

- 76 cm of mercury. What will be the height of mercury column in a barometer tube 90 cm long placed in the satellite? (b) 90 cm
 - (a) 76 cm

(c) zero

(d) None

- The pressure in a liquid at two points in the same horizontal plane are equal. Consider Q 4. (an elevator accelerating upward and a car accelerating on a horizontal road. The above statement is correct in -
 - (a) the car only

(b) the elevator only

(c) both of them

- (d) neither of them
- Q 5. A beaker containing a liquid is kept inside a big closed jar. If the air inside the jar is continuously pumped out, the pressure in the liquid near the bottom of the liquid will -(a) increase
 - (b) decrease
 - (c) remain constant
 - (d) first decrease and then increase
- Q 6. A container having dimensions $5m \times 4m \times 3m$ is accelerated along its breadth in horizontal. Container is filled with water up to the height of 1.5 m. Container is accelerated with 7.5 m/s². in accelerated container (Take $g = 10m/s^2$, density of water is 10^3 kg/m^3)

- (a) Gauge pressure at point C is 10^4 Pascal
- (b) Gauge pressure at point D is 3×10^4 Pascal
- (c) Gauge pressure at the middle of the base is 1.5×10^4 Pascal
- (d) Remaining volume of liquid inside the container is $20m^3$
- Q 7. A liquid of density r filled in the vessel as shown is rotated with constant angular velocity 'w' about the axis passing through the middle. The radius of cylinder is R. Then –

Q 8. When at rest, a liquid stands at the same level in the U tubes. But as indicated a height difference h occurs when the system is given an acceleration a towards the right. Here, h is equal to:

Q 9. The figure shows a semi-cylindrical massless gate pivoted at the point O holding a stationary liquid of density r. A horizontal force F is applied at its lowest position to keep it stationary. The magnitude of the force is –

Q 10. Three liquids having densities ρ_1 , ρ_2 and ρ_3 are filled in a U-tube. Length of each liquid column is equal to 1. $\rho_1 > \rho_2 > \rho_3$ and liquids remain at rest (relative to the tube) in the position shown in figure. It is possible that-

- (a) U-tube is accelerating leftwards
- (b) U-tube is accelerating upwards with acceleration g
- (c) U-tube is moving with a constant velocity
- (d) None of these
- Q 11. liquids of density ρ_1 and ρ_2 stand in the bent tube as shown. Density of lowermost liquid is ρ . Point M and N are at same horizontal level and system is in equilibrium.

Q 12. A cubical open vessel of diameter 5 m is filled with a liquid. The vessel is accelerated horizontally in such a way that the height of the liquid becomes 5 m and the pressure at the mid point of the vessel becomes equal the atmospheric pressure. Then the acceleration of the vessel will be (b)3g (c) 2g (d) 3g/2(a) g

Answer Key

Q.1 a	Q.2 d	Q.3 b	Q.4 b	Q.5 b
Q.6 b, c	Q.7 a, b, c, d	Q.8 d	Q.9 d	Q.10 d
Q.11 a, b	Q.12 c			

PRATERNAL JAMA PRATESAL OLICS